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The HINS proton ion source and low energy beam transport (LEBT) was successfully
commissioned. It is capable to produce a 50 keV, 3 msec pulsed beam with a peak current
greater than 20 mA (less than 50% proton, discussed below) at 2.5 Hz (0.7% duty factor).
The beam is transported to the radio frequency quadrupole (RFQ) by the LEBT that
consists of two focusing solenoids and four steering dipole magnets. To understand beam
transmission through the RFQ, it is important to characterize the proton beam before
connecting the LEBT to the RFQ. A wire scanner and a Faraday cup are temporarily
installed at the exit of the LEBT to study the beam parameters. A schemetic drawing is
shown in Fig. 1.

All data were taken using the wire scanner. We started with interpreting the signal
measured by the wire scanner. Then, we performed a beam-base calibration to the steering
dipole magnets. We then studied transverse motion coupling due to solenoidal field by
measuring beam rotation through solenoid. Finally, together with a slit the wire scanner
will form an emittance probe (slit-wire scanner assembly) for direct emittance measure-
ment. Result from direct emittance measurement is compared to indirect measurement
using solenoid variation method. Note that, due to high voltage supplies limitation in the
early stage of operation, some of the measurements were made for beam below 50 keV.
Unless specified, the beam energy is assumed to be 50 keV.
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Figure 1: Layout of LEBT.
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1 Transverse Beam Profile Measurement

Horizontal and vertical beam profiles are measured using the wire scanner. Fig. 2 shows
the results of a vertical beam profile measurement for a 48 keV proton beam with a pulse
length of 100µs at a repetition rate of 0.5 Hz. The two solenoids were optimized to locate
the beam waist at the wire scanner. The data points reflect the integrated electric charge
as seen by the wire at every step across the beam pipe. The narrow peak is the profile of
the proton beam. The background signal comes from other particle species (mainly H+

2 )
being extracted from the source.

As shown in the figure, the background has an integrated signal that is larger than that
of the proton. In fact, a peak current of 8 mA is recorded by the current transformer while
the reading at the Faraday cup is only 3.5 mA, suggesting a beam loss of more than 50 %.
In contrast, the results coming from TRACK simulation shows zero beam loss under the
same solenoid settings. This suggests that more than 50 % of the beam is composed of
non-proton ion species and that contribute to most of detected beam loss.

The possibility that the faster proton being separated from the slower H+
2 is excluded.

Consider a total length of 1 meter from the ion source to the wire scanner. Proton is half
the weight of H+

2 therefore at the same kinetic energy proton moves faster by a factor of√
2. Suppose proton and H+

2 leave the ion source at the same time. After 1 meter of travel,
their time separation is about 0.134 µs, which is much smaller than the pulse length of 100
µs. So, at the wire scanner proton and H+

2 are approximately at the same phase.
To extract the profile of the proton beam from the combined signal, two Gaussian

distributions, one for the proton and one for the H+
2 , are used to fit the raw data. The

expression used for fitting is

signal(x) = g(A1, σ1, x01;x) + g(A2, σ2, x02;x) · pipe(x) + k, (1)

where

g(A, σ, x0, x) = A · exp(
−(x− x0)2

2σ2
), (2)

pipe(x) =
1
r

√
r2 − x2, (3)

where r is the radius of the beam pipe and k is a constant. The normalization factor,
pipe(x), is applied to the second Gaussian since, as shown in Fig. 2, the H+

2 ions fill out the
whole beam pipe, whose radius, r, is 17 mm.

The fitting has a coefficient of determination, the R2 value, larger than 0.99 (see
Fig. 2(a)). The profile of the proton beam is nicely extracted from the fitting (see Fig. 2(b)).
The RMS beam size, σrms, or σ1 in Eq. (1), obtained from this measurement is 0.64 mm.
This measurement has been repeated for ten times. The error for such a measurement is
± 2 %. Fig. 3 is a plot showing the time structure of the proton beam pulse. This 100µs
pulse beam has a flat-top of about 50µs.
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(a) Raw signal from the wire scanner. The red line is a
double Gaussian fit. The fit has a R2 value of greater
than 0.99.
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(b) The fit successfully extracts the profile of the proton
beam from raw data.

Figure 2: Transverse beam profile measurement using wire scanner. Due to the presence of
H+

2 ions, two Gaussians are used to fit the data. The profile of the proton beam
is nicely extracted from the raw data.
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(a) (b)

Figure 3: The time structure of the beam pulse. This 100µs beam pulse has a flat top of
about 50µs.

2 Beam Steering by the Dipole Magnets

In addition to beam profile measurement, the wire scanner can also be used to determine
the position of the beam relative to the beam pipe. Beam deflection as a function of magnet
strength is measured for a 45 keV proton beam.

In order to measure the beam deflection as a function the strength of the corrector dipole
magnets, the downstream solenoid, SOL-D, is switched off to avoid x-y coupling. Fig. 4
shows the change in the beam profile (or position) as the strength of the dipoles is varied.
Since the SOL-D is turned off, the size of the proton beam is much larger. Fortunately, the
movement of the peak of the beam profile can still be clearly observed. The vertical position
of the beam does not response to excitation in the horizontal dipole magnets (see Fig. 4(a)
and 4(c)). Also, the horizontal position does not change with the strenght of vertical dipole
magnets (see Fig. 4(b) and 4(d)). This suggests that the dipoles were well aligned such that
x and y motion are not coupled up to our resolution. Note that the two horizontal dipoles
bend the beam in different directions. This is also true for the two vertical dipoles.

The amount of beam deflection as a function of dipole strength can be estimated using
the data plotted in Fig. 4. It can also be estimated by considering the angle of deflection
of obtained from the Lorentz force law

θd =
e

p

∫ z2

z1

Bdz =
1
Bρ

∫ z2

z1

Bdz (4)

where e is the charge of an electron, p = γβmc is the momentum of the beam, and Bρ = p/e
is the momentum rigidity of the beam. B is the transverse magnetic field along the beam
axis. For a proton beam at 45 keV the momentum rigidity is 30.653 kG-cm.

The estimated and measured spatial deflection of the beam at the wire scanner are
plotted together in Fig. 5. For the downstream dipoles, result from calculation was 3.3
mm/Amp. Measurement result for DIP-DH was 3.1 mm/Amp and that for DIP-DV was
2.8 mm/Amp. However, the result for the upstream dipoles, DIP-UH and DIP-UV, shows
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(a) DIP-DH

(b) DIP-DV

(c) DIP-UH

(d) DIP-UV

Figure 4: Beam profile measurement under different dipole strengths. The solenoid SOL-D
is switched off to avoid x-y coupling.
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(a) DIP-DH

(b) DIP-DV

(c) DIP-UH

(d) DIP-UV

Figure 5: Beam spatial deflection at the location of the wire scanner. Comparison is made
between measurement result shown in Fig. 4 and calculation using Eq. (4).
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significantly smaller deflection compared to calculation. Result from calculation was 7.3
mm/Amp while measurement result for DIP-UH was 4.0 mm/Amp and that for DIP-UV
was 3.5 mm/Amp. This is due to the fact that the two upstream dipoles are located too
close to the upstream solenoid, SOL-U, such that the dipole field was “absorbed” into the
iron shielding of the solenoid, which shortened span of the dipole field and lowered the field
amplitude. Another implication from this result is that the alignment (roll angle) of the
dipoles is acceptable up to the resolution of beam position measurement using the wire
scanner. This step is crucial in the measurement of beam rotation due to solenoidal field,
which is discussed in next section.

3 Beam Rotation by Focusing Solenoid

When a beam travels through a solenoid, its horizontal and vertical dynamics are coupled
due to the beam rotation by the solenoidal field. In the following, we study beam rotation
due to solenoidal field by (1) solenoid lens model and (2) particle tracking. Then we will
show measurement results for beam rotation by the downstream solenoid SOL-PET. Results
from analytical calculation and measurement will be compared.

3.1 Solenoid as a Lens

The treatment follows the discussion in [1]. We can model a solenoid as a lens by considering
that the magnetic field is uniform inside the solenoid and zero otherwise. The solenoid has
a length of L. Inside the solenoid, for 0 < z < L, the magnetic field is uniform ( ~B = B0ẑ).
The magnetic field is zero outside the solenoid. For region near z = 0 and z = L, the field
rises rapidly from zero to B0 (or drops from B0 to zero).

Inside the solenoid (0 < z < L), in a uniform solenoidal magnetic field, the trajectory
of a charged particle is in general a helix. The projection of the helix on the x-y plane is a
circle of radius R. From ~F = q(~v × ~B), the radius of the circle, R, is given by

γmv2
⊥

R
= qv⊥B0, (5)

so that
R =

γmv⊥
qB0

, (6)

where γ is the relativistic Lorentz factor, m is the rest mass of the particle, q is the charge
of the particle, and v⊥ is the particle’s velocity projected onto the x-y plane. The cyclotron
frequency, ω, is given by

ω =
v⊥
R

=
qB0

γm
. (7)

Using the cyclotron frequency, we can calculate the aximuthal angle, φh, rotated by the
particle’s trajectory about the axis of the helix. This is given by the product of the cyclotron
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and the time it takes for the particle to traverse the field:

|φh| = ωt =
qB0

γm

L

vz
≈ qB0L

p
, (8)

where p = γβmc is the momentum of the particle, and vz � v⊥ is assumed.
Near the two ends of the solenoid, z = 0 and z = L, where the axial magnetic field is

changing, Maxwell equation suggests that there exists a radial component of the magnetic
field, given by

∇ · ~B =
1
r

∂(rBr)
∂r

+
∂Bz
∂z

= 0, (9)

so that
Br ≈ −

r

2
∂Bz
∂z

. (10)

This radial field component gives an azimuthal kick to the particle when it enters or exits
the solenoid. The change in the azimuthal momentum can be obtained from the Lorentz
force law

dpφ
dt

= vz
dpφ
dz

= qvzBr ≈ −qvz
r

2
∂Bz
∂z

(11)

so that
∆pφ ≈ −

qr∆B
2

, (12)

where ∆B(z = 0) = B0 and ∆B(z = L) = −B0.
An important implication of the model is that the azimuthal kick received by the particle

when it enters the solenoid (z = 0) cancels that at the exit (z = L). This is expected due
to conservation of canonical angular momentum [1]. Another important result is that the
angle rotated about the axis of the solenoid by the particle’s trajectory, φlens, is equal to
one-half of the angle rotated about the axis of the helix, φh as defined in Eq. (8) (see [1]).
Hence,

φlens =
1
2
φh = −qB0L

2p
. (13)

This can be interpreted as the angle of rotation of a beam when it traverses a solenoid.
Note that the angle of rotation is in the −φ̂ direction if the longitudinal velocity vz is in
the same direction of the axial solenoid field B0 (Lenz’s law).

3.2 Particle Tracking

To track a charged particle traveling through a solenoid, we need to know the magnetic
field produced by the solenoid. The 3-D magnetic field array can be measured directly, or
can be calculated using the measured axial field profile, Bz0(z), of the solenoid.

The axial field profile, Bz0(z), of the downstream solenoid, SOL-PET, is measured.
Using Bz0(z), the magnetic field, up to the third order, near the axis of the solenoid can be
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calculated as

Bx(x, y, z) = −1
2
xB′z0(z) +

1
16
x(x2 + y2)B′′′z0(z)− . . . ,

By(x, y, z) = −1
2
yB′z0(z) +

1
16
y(x2 + y2)B′′′z0(z)− . . . ,

Bz(x, y, z) = Bz0(z)− 1
4

(x2 + y2)B′′z0(z) + . . . ,

(14)

where the “prime” is the derivative with respect to “z”.
The motion of a charged particle obeys the Lorentz force law

d~p

dt
= q( ~E + ~v × ~B). (15)

Assuming change in energy and in the longitudinal velocity vz of the particle is negligible
along the solenoid, we have

dpx
dt
→ γmv2

z

d2x

dz2
and

dpy
dt
→ γmv2

z

d2y

dz2
.

The equations of motion of a particle in a solenoidal field obtained from the Lorentz force
law using the above substitution read

x′′ = −By(x, y, z)
Bρ

+ y′
Bz(x, y, z)

Bρ
,

y′′ =
Bx(x, y, z)

Bρ
− x′Bz(x, y, z)

Bρ
,

(16)

where Bρ = p/q = γmv/q ≈ γmvz/q is the momentum rigidity of the particle.
Using Eq. (14), Eq. (16) and the axial field profile of SOL-PET, protons with a kinetic

energy of 48 keV is tracked and its trajectory is plotted in Fig. 6(b). The proton enters the
fields at x(zi) = 1 mm, x′(zi) = 5 mrad, and y(zi) = y′(zi) = 0. Since the proton enters the
fields at zero azimuthal angle on the x-y plane (φ = 0), the proton displaces on the plane
an angle

φtrack = tan−1

(
y(zf )
x(zf )

)
, (17)

where zf is the longitudinal location where the solenoid field vanishes. This angle is also
the angle of the rotation of a beam when it travels through a solenoid. We note that φtrack
is not sensity to x′(zi) and y′(zi) provided that they are � 1.

3.3 Beam Rotation by SOL-PET

The two focusing solenoids, SOL-U and SOL-PET, are optimized to locate the proton
beam waist near the wire scanner to produce decent profile measurement. Beam position
is obtained.
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(a) A 3-D plot of the trajectories of 20 protons.
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(b) The projection on the x− y plane.

Figure 6: Protons at 48 keV are tracked through the magnetic field produced by SOL-D. (a) The
trajectores of 20 protons are simulated. These trajectories represent the beam envelope
of a beam. Rotation of the envelope is observed. (b) The proton enters the fields at
x = 1 mm, x′ = 5 mrad, and y = y′ = 0.

10



ææ

æ

æ

æ

æ

æ

æ

æ

æ

Dipoles Off

+x

-x

-y

-15 -10 -5 0 5 10 15

-15

-10

-5

0

5

10

15

x @mmD

y
@m

m
D

Figure 7: Beam position measurement with different dipole settings. These settings span
out a square on the x-y plane. The angle of rotation of the square is the beam
rotation due to the solenoid SOL-PET. In this example the beam rotation is
+75 degrees.

In the Fig. 7, measurements are made for nine different dipole settings. These settings
span out a rotated square on the x-y plane. Since we have shown that there is no x-
y coupling when the downstream solenoid is turned off (see Fig. 5), the presence of the
solenoid field produced by SOL-PET is the only contribution to the rotation of the square.
The angle of rotation of the square is the angle of rotation of the beam. In this example,
the beam rotation is (+75±2) degrees. The angle of rotation is in the +φ̂ direction because
the magnetic field points in the −ẑ direction (Len’s law).

The angle of beam rotation as a function of solenoid strength is obtained from these
measurements and is plotted together with the results from the analyses discussed in Sec-
tion 3.1 and 3.2. This is shown in Fig. 8. The error for each of the measurements is
±2 degrees. As shown in the figure, three sets of measurement have been made for different
SOL-U settings. The amount of beam rotation has no obvious dependence on the strength
of SOL-U, as expected. The two approaches discussed in Chapter 3.1 and 3.2 on estimating
the amount of beam rotation produce similar results in the region of solenoid strength where
the measurement was made. The discrepancy on the two results stems from the fact that
φlens calculation is sensitive to the effective length of the solenoid, which is determined by
the solenoid field profile measurement. The measurement result is in good agreement with
the simulation. Linear fit was performed to data. Result for beam rotation in terms of
degree per kGauss is summarized in Table 1.
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Figure 8: A comparison of the measurement and simulation results for the beam rotation
by SOL-PET. The amount of beam rotation has no obvious dependence on the
strength of SOL-U, as expected. The two approaches of simulation, φlens and
φtrack, produce similar results. The measurement result is in good agreement
with the simulation.

degrees/Amp degrees/kGauss
Solenoid Lens 0.242 18.9

Tracking 0.241 18.8
SOL-U 350 0.242 18.9
SOL-U 400 0.245 19.14
SOL-U 450 0.226 17.7

Table 1: Beam rotation per solenoid field − SOL-PET.
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(a) A beam current of 4 mA.
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(b) A beam current of 8 mA.
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(c) A beam current of 12 mA.
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(d) A beam current of 16 mA.

Figure 9: The measured RMS beam width is plotted as a function of the strength of SOL-
PET. The two solenoids, SOL-U and SOL-PET, are optimized to locate the beam
waist to near the wire scanner. The strength of SOL-U remains unchanged for
the measurements.

4 Tranverse Emittance

We have measured emittance using two different methods: solenoid variation method and
slit-wire scanner method. Below we dicuss the measurement individually. We then compare
the results.

4.1 Measurement using Solenoid Variation Method

The RMS beam size σ changes with the strength of the focusing solenoids. This relation is
measured for different beam current and is plotted in Fig. 9. The two solenoids, SOL-U and
SOL-PET, are optimized to locate the beam waist to near the wire scanner. The strength of
SOL-U remains unchanged for the measurements. Recall from Chapter 1 that the error for
these beam width measurements is about ±2 %. These relations can be used to reconstruct
the transverse beam emittance. The method is discussed in the following.
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Consider the RMS K-V envelope equation:

σ′′x + kx(z)σx −
Ksc

2(σx + σy)
−
ε2x,rms
σ3
x

= 0,

σ′′y + ky(z)σy −
Ksc

2(σx + σy)
−
ε2y,rms
σ3
y

= 0.
(18)

where kx(z) = ky(z) = g2(z) = (Bz(z)
2Bρ )2 is the solenoid focusing strength, and

Ksc =
2Ib

γ3β3I0
(19)

is the generalized perveance. Here Ib is the beam current, γ is the Lorentz factor, β =√
1− 1/γ2, and I0 = 4πε0mc3/q is the characteristic current.
It implies that the analysis is assumed to be in the Larmor rotating frame. The use

of decoupled transfer matrix can be justified by the fact that Our 50 keV proton beam is
approximately a round beam. So we can decoupled Eq. (18) by setting σx = σy and εx = εy.
It can be shown that for a round beam with σx = σy and εx = εy, under solenoidal focusing
channel, beam envelope analysis in the two transverse planes is identical and decoupled,
provided that we interpret the results in the Larmor rotating frame. A more detailed
discussion on this topic is given in [2].

The solution to Eq. (18), the RMS beam width σx(z) and σy(z), can be solved by
knowing the Twiss parameter β, α, and the RMS emittance εrms. Fig. 9 shows RMS beam
width as a function of solenoid strength. We can used the mentioned three parameters to fit
a parabola to the data shown in Fig. 9. RMS beam emittance εrms can then be determined.

The RMS emittance is plotted as a function of the beam current in Fig. 10. Note that
the current in the plot is the proton beam current, which is 40% of the total beam current.
The major source of uncertainty to this measurement is the drift in SOL-PET excitation
current. A drift of 1 Amps in SOL-PET results in up to ±0.03 mm-mrad or error. Analysis
will be given in the next section when we compare the results from the two measurement
methods.

4.2 Measurement using Slit-Wire Scanner Method

Another method that has been used for the HINS proton ion source emittance measurement
is the slit-wire scanner method. A schemetic drawing of the setup is shown in Fig. 11. The
spatial distribution (distribution in x) is scanned by the slit while the angular distribution
(distribution in x′) is scanned by the wire scanner located a distance L downstream in the
beamline. At every position x, the slit is held fixed to allow a portion of the beam to pass
through. The particles in the portion (beamlet) reaching to the plane of the wire scanner
travel in a straight line [3]. So the angular distribution at every position x of the beam
can be measured by the wire scanner, forming density distribution function ρ(x, x′) on the
x− x′ projection of the phase space.
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Figure 10: The normalized RMS emittance is plotted as a function of the beam current.
The beam current in the plot is the proton current, which is about 40% of the
total beam current.

Figure 11: A schemetic drawing of the slit-wire scanner setup.

15



(a) A beam current of 4 mA. (b) A beam current of 8 mA.

(c) A beam current of 12 mA. (d) A beam current of 16 mA.

Figure 12: 3D plot of the measured beam distribution ρ(x, x′) using the slit-wire scanner
assembly. The strip in white is signal from the H+

2 particle population, which is
huge and is out of the plotting range.
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(a) A beam current of 4 mA. (b) A beam current of 8 mA.

(c) A beam current of 12 mA. (d) A beam current of 16 mA.

Figure 13: 3D plot of the measured beam distribution ρ(y, y′) using the slit-wire scanner
assembly. The strip in white is signal from the H+

2 particle population, which is
huge and is out of the plotting range.
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(a) Signal before background subtraction. (b) Signal with background subtracted.

Figure 14: A comparison of the measurement data before and after background subtraction.
Signal near the region of the strip in white is erased. It is then filled up by 2-D
interpolation.

The measured density distribution functions in both the x− x′ and y − y′ phase space
planes for different beam current are shown in the 3D density plots in Fig. 12 and 13. In
the figures, the island is the signal from the proton while the strip is the signal from the H+

2

particle population (in white because the signal is huge and is out of the plotting range). As
shown in the figures, the beam is convergent at the location of the slit. The beam size is large
and the full width of the beam is about 18 mm in both planes for all current. The divergence
of the beam increases with the beam current. At larger beam current, the beam appears
as an ”S” shape in the phase space. This is a sign of non-linearity in focusing/defocusing
forces, which includes solenoidal field aberration and space charge force.

To compute the RMS emittance from the measured data, signal from H+
2 must be

subracted. A comparison of the signal before and after background subtraction is shown in
Fig. 14. Data near the region of the strip is erased. It is then filled up with 2-D interpolation
using the data in the surroundings.

After background subtraction, it is ready to compute the RMS emittance from the data.
The cleaned signal is the intensity distribution function ρ(xi, x′j). It is a m×n array storing
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the density information. The second moments can be calculated as

〈
x2
〉

=

∑m
i=1

∑n
j=1(xi − 〈x〉)2ρij
Itot

, (20)

〈
x′2
〉

=

∑m
i=1

∑n
j=1(x′j − 〈x′〉)2ρij
Itot

, (21)

〈
xx′
〉

=

∑m
i=1

∑n
j=1(xi − 〈x〉)(x′j − 〈x′〉)ρij

Itot
, (22)

where

〈x〉 =

∑m
i=1

∑n
j=1 xiρij

Itot
, (23)

〈
x′
〉

=

∑m
i=1

∑n
j=1 x

′
jρij

Itot
, (24)

are the arithmetic mean of the density function ρ(xi, x′j). Here Itot =
∑m

i=1

∑n
j=1 ρij is the

normalization factor. From the second moments, we can construct the RMS emittance

εx,rms =
√
〈x2〉 〈x′2〉 − 〈xx′〉2. (25)

The Twiss parameters can also be calculated [4],

β =

〈
x2
〉

εx,rms
, α = − 〈xx

′〉
εx,rms

,

γ =

〈
x′2
〉

εx,rms
=

1 + α2

β
.

(26)

The cleaned signal is presented as density plot in Fig. 15 and 16. RMS ellipse defined by

εx,rms = γx2 + 2αxx′ + βx′2 (27)

is drawn on the top of the phase space density plot.
The RMS emittance as a function of the beam current is compared to the result dis-

cussed in Chapter 4.1, where the RMS emittance is deduced from solenoid variation method
(Fig. 10). The two sets of results are plotted togehter in Fig. 17. The major source of error
for the slit-wire scanner measurement comes from the signal cleaning process. By changing
the parameters used in data interpolation, an error of ±0.05 mm-mrad is recorded.

4.3 Result Analysis

In Fig. 17, results for emittance measurement using two methods, solenoid variation and
slit-wire scanner, are compared. We observe that, up to measurement error, the two sets of
results agree at lower proton current but diverge at higher current. In this section, we try
to explain this observation.
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(a) A beam current of 4 mA. (b) A beam current of 8 mA.

(c) A beam current of 12 mA. (d) A beam current of 16 mA.

Figure 15: Phase space plot in the x − x′ plane. With the cleaned distribution function,
the RMS beam emittance and the Twiss parameters can be calculated. Ellipses
defined by the Twiss parameters are drawn in the figures.
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(a) A beam current of 4 mA. (b) A beam current of 8 mA.

(c) A beam current of 12 mA. (d) A beam current of 16 mA.

Figure 16: Phase space plot in the y − y′ plane. With the cleaned distribution function,
the RMS beam emittance and the Twiss parameters can be calculated. Ellipses
defined by the Twiss parameters are drawn in the figures.
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Figure 17: The beam emittance is plotted as a function of the beam current. Results from
measurement using the slit-wire scanner assembly and using solenoid variation
method are compared.

22



First of all, it is important to realize that, although we plot them together, the two
sets of results describe the beam emittance at two different locations along the beamline.
In the solenoid variation method, we used K-V envelope equation to determine the RMS
beam emittance at the entrance of the beamline, i.e. the proton ion source. Since space
charge effect has been taken into account, the result can be considered as the emittance of
the proton source, where space charge does not have enough time to affect the emittance.
In the slit-wire scanner method, emittance was measured at the slit-wire scanner assembly,
which was the exit of the beamline, which is about 1 m or 320 ns away from the proton source.
It is reasonable to interpret the result from the solenoid variation method as the emittance
performance of the proton source while the result from the slit method as the effect of space
charge on emittance. According to Fig. 17, space charge effect led to emittance growth at
higher beam current, which is reasonable.

5 Summary

The HINS proton ion source and low energy beam transport (LEBT) was successfully
commissioned. It is capable to produce a 50 keV, 3 msec pulsed beam with a peak current
greater than 20 mA (less than 50% proton) at 2.5 Hz (0.7% duty factor).

Beam studies started with interpreting the signal measured by the wire scanner. We
successfully extracted the proton signal from a mixture of proton and H+

2 . The have mea-
sured the RMS beam width of the proton up to 2% error. Then, we performed a beam-
calibration to the steering dipole magnets. The dipole magnets were calibrated and aligned.
We then study transverse motion coupling due to solenoidal field by measuring beam ro-
tation through solenoid. Measurement result matches with prediction from beam physics
modelings and particle tracking simulations. Finally, transverse beam emittance were mea-
sured both directly (slit-wire scanner) and indirectly (solenoid variation). The result from
solenoid variation method can be interpret as the emittance performance of the proton
source as a function of beam current, since the emittance was determined at the source
with space charge effect taken into account. For the slit method, beam emittance was mea-
sured at the slit, which is about 1 m or 320 ns away from the source. Space charge effect
has enough time to cause emittance growth, which can be observed from the comparison of
the two sets of results.

The resutls for our beam studies provide valuable information on the quality of the
proton beam. This information is important in beam matching for LEBT to RFQ, beam
steering control under solenoidal focusing channel, and etc.
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